
“It’s ideal for remote, sparse, or sensitive regions,” said Manish Rawat, analyst at TechInsights. “Key use cases include cloud-to-cloud links, data center replication, government, defense, and disaster recovery workloads. It supports rapid or temporary deployments and prioritizes fewer customers with high capacity, strict SLAs, and deep carrier integration.”
Adoption, however, is expected to largely depend on the sector. For governments and organizations operating highly critical or sensitive infrastructure, where reliability and security outweigh cost considerations, this could be attractive as a redundancy option.
“Banks, national security agencies, and other mission-critical operators may consider it as an alternate routing path,” Jain said. “For most enterprises, however, it is unlikely to replace terrestrial connectivity and would instead function as a supplementary layer.”
Real-world performance
Although satellite connectivity offers potential advantages, analysts note that questions remain around real-world performance.
“TeraWave’s 6 Tbps refers to total constellation capacity, not per-user throughput, achieved via multiple optical inter-satellite links and ground gateways,” Rawat said. “Optical crosslinks provide high aggregate bandwidth but not a single terabit-class pipe. Performance lies between fiber and GEO satellites, with lower intercontinental latency than GEO but higher than fiber.”
Operational factors could also affect network stability. Jitter is generally low, but handovers, rerouting, and weather conditions can introduce intermittent performance spikes. Packet loss is expected to remain modest but episodic, Rawat added.
